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Molecular Theory and Simulation
Every attempt to employ mathematical methods in the study of
(bio)chemical questions must be considered profoundly irrational and
contrary to the spirit of (bio)chemistry. If mathematical analysis should
ever hold a prominent place in (bio)chemistry - an aberration which is
happily almost impossible - it would occasion a rapid and widespread
degeneration of that science.
A Comte (1830)
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Molecular Theory and Simulation
Every attempt to employ mathematical methods in the study of
(bio)chemical questions must be considered profoundly irrational and
contrary to the spirit of (bio)chemistry. If mathematical analysis should
ever hold a prominent place in (bio)chemistry - an aberration which is
happily almost impossible - it would occasion a rapid and widespread
degeneration of that science.
A Comte (1830)

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of (bio)chemistry are thus
completely known, and the difficulty lies only in the fact that the exact
application of these laws leads to equations much too complicated to be
soluble.
P. A. M. Dirac (1929)
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Theoretical Framework for Molecular
Simulation
In the chemical energy regime, where most of molecular materials,
chemistry, biology operates, we organize our theoretical framework
into four basic theories:

(1) Quantum Mechanics Potential energy surfaces
QM allows prediction of potential energy surfaces on which atoms
move via the Born-Oppenheimer approximation
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Theoretical Framework for Molecular
Simulation
In the chemical energy regime, where most of molecular materials,
chemistry, biology operates, we organize our theoretical framework
into four basic theories:

(1) Quantum Mechanics Potential energy surfaces
QM allows prediction of potential energy surfaces on which atoms
move via the Born-Oppenheimer approximation

(2) Classical Mechanics Moving on PE surfaces
Atoms and molecules obey classical motion on these potential energy
surfaces; i.e. Newtons’ equations of motion: F=ma (QM or MModel)

(1) and (2) describes physical matter at level of microscopic atoms
and molecules
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Theoretical Framework for Molecular
Simulation
(3) Thermodynamics Macroscopic Observables

Measures equilibrium properties at the level of macroscopic
observables under externally controllable conditions: temperature,
pressure, etc

(4) Statistical Mechanics          Microscopic to macroscopic

Statistical Mechanics permits correct statistical averaging of
molecular info based on distributions that depend on externally
controllable specified conditions (T, P, etc), to connect microscopic
theories to macroscopic observables.

It recognizes “importance sampling” through stochastic Monte
Carlo simulations
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Statistical Mechanics/Numerical
Simulation
When statistical mechanics theories can not be expressed in
analytical form, then numerical methods are necessary to simulate
the laws of statistical mechanics. Good sampling statistics are
necessary to converge observables

The statistical distributions we sample all depend on the potential
energy (QM). Potential energy surfaces are the basic physical
interactions between molecules, atoms, or even the basic constituents
of atoms, such as electrons. We can model them at different levels of
accuracy

Thus we must analyze the trade off between accuracy and tractability
of potential energy surfaces vs. sampling statistics (MD or MC)
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Models, Algorithms, Hardware
Some community efforts, but also alot of “roll-your-own”!

Models: depends on science question (better developed)
   most use fixed charge models O(NlogN)
   polarizable FFs and ab initio MD [cO(NlogN) and CN2.5-3.0 ]
  get rid of water!  (Folding@home)
   get rid of atomic detail of atoms!

Methods/Algorithms: Enhance sampling
   increase effective time step of atomistic MD (under-developed)
   Enhanced MC techniques such as Replica Exchange  (active)

Hardware Implementations: Sampling and model
   parallelization (under-developed for new advanced models)
   get a better computer!  (BGene, DE Shaw, Fold@home, GPUs)
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Long-Ranged Forces

Reformulate original non-convergent sum with two sums: a real-
space sum (r-sum: screened) and inverse-space sum (k-sum:
compensating) which we can derive from Poisson’s equation
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Long-Ranged Forces

•Conventional algorithm scales as N3/2

•Particle Mesh Ewald O(NlogN)
Spatial Decomposition in r-space; Parallelization of FFT's in
k-space

•Evaluate Ewald in r-space using FMM techniques O(N). Hard
to beat PME for continuous potentials and smooth densities

This rate limiting step must be evaluated many times due to
symplectic structure of MD (106-9). In the next 5 years it would be
109 to 1015 times per system (of many, many systems)
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The inverse space part is evaluated with a Fast Fourier transform
evaluated on a discrete lattice in space
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Big Science Opportunities in Simulation
Genome efforts: ~1/3 of the sequences in the

human genome involve unstructured
proteins!

Biofuels: MD simulation studies of existing
cellulases or de novo design of new enzymes
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Disordered Proteins

Human Genome Initiative
Microbial organisms

Comparative genomics

Structural Genomics
Protein complexes

Bio-Nano materials

Functional Annotation Initiative
Yeast two-hybrid screening

Gene expression micro-arrays

Sequence

Structure

Function
Dynamics

Single Molecule
Temporal measurements

Force-velocity

Engineering:
Systems/synthetic biology

Disordered or unstructured proteins (no distinct single tertiary
structure) comprise 1/3 of the sequences in the human genome!
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Disordered Proteins
Traditional experimental x-ray determination of (functionally
important) unstructured peptides and proteins is a non-starter.

NMR is the obvious experiment but is a challenge to interpret due to
diversity of populations. NMR can provide restraints on the
population profile but can’t quantify populations

By contrast, simulations generate fully detailed ensembles and
populations, but accuracy may be questionable due to the empirical
nature of the potential energy description and issues of convergence
to equilibrium.

 

Bioinformatics and Genomics can’t
provide the solution to this problem
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Disordered Proteins
The physics of NMR is very well understood:

Simulation can simulate the experimental observable!
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Need to think about the
possibility of

computational beamlines
of annotating this 1/3 of

genome

Disordered Proteins

Simulation necessary to
define structure of

disordered proteins!
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Biofuels and De Novo Enzyme Design
 Computational de novo design approach emphasizes catalysis of
virtually any reaction

Non-natural substrates
Substrate, catalytic, product promiscuity and regulation

We wish to extend that goal to virtually any reaction under
virtually any solution condition for arbitrary scaffold:

Temperature, salt, pH
Non-natural solvents such as ionic liquids
Native cellular environments
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Biofuels and De Novo Enzyme Design
While statics met, temporal criteria fails completely. This is most
likely source of poor catalysis in de novo design.

Must combine rational design with computational directed evolution:
we want high-throughput and therefore fast computational

dynamical assays of activity: increases complexity multi-fold over
static approaches
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Challenges and Opportunities in Molecular
Bio/Chemical Simulation
Primary issues are model accuracy (QM and force fields) &
sampling statistics (SM)

Model Accuracy:
• QM needs lower cost-scaling algorithms with high accuracy, and
parallelization implementations are still active research areas
• High accuracy empirical FFs suffer milder but similar problems
• Lower accuracy empirical FFs and CG Modeling can be
appropriate depending on science (much larger systems, timescales)

Sampling Statistics:
• Sampling to convergence is starting to become a more dominant
issue (models are much better!): Replica exchange is not a panacea!
• Interesting (viable?) hardware: DEShaw, Folding@home, GPUs
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Potential Impact of HEC in Bio/Chemical
Sciences
Given outlined “Grand Challenges” of 4 science areas, what is
needed to “solve” Grand Challenges is High-End Capability
Computing

• Mathematical Models (especially in QM domain)
• Sampling Algorithms (especially in SM domain)
• Parallelization Software Support
• Traditional Facilities (Hardware, compilers, libraries (I/O) , mass
storage; visualization and analysis tools; access)
• Speciality hardware (Anton (De Shaw); GPUs)
• Training/Education (important!)
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Community Codes/Software
Comp. Biophysicists do not work as teams! But consortiums develop
to generate community codes/models

SM (MD): AMBER, TINKER, NAMD, GROMACS, LAMMPS,
CHARMM, DLPOLY, ilmm, in-house codes
QM: GAMESS, Gaussian03, Q-Chem
Multiscale: PARASIM/LAMMPS/DYNAMO
Analysis: Gnuplot, Mathematica, Matlab, PERL, VMD

Memory requirements/core: 1-2GB
Core Hours/yr: 250K-30.0M (but multiply by ~10 users)
Typically bundle jobs to get to ~2.5-30K cores
Wall Clock: limited by queue times; w/restarts can be ~1-6 months
Online Storage: 50GB-2.5TB (accessible during simulation)
Archival storage for large datasets less critical?
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AMBER9.0/10.0
Written in Fortran77/90 and uses MPI on most basic applications.
Uses PME that scales as O(NlogN), and parallelized with MPI

Hybrid MPI/OpenMP implementation is available (but
experimental) in AMBER10.0. Optimize cache

However, optimized parallel version works with only some subset of
theoretical models.

Overlayed on top of fine-grained parallelization (if it exists for a
given theoretical model) is another layer of (trivial) coarse-grained
parallelization involving the replica exchange sampling algorithm,
which runs N-independent simulations (each at a different
temperatures), that involve infrequent communication to swap state
point information (position and velocities of all atoms).
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Strong Scaling
The PMEMD executable (MD kernal) of AMBER9.0 has been
thoroughly tested by the author, Bob Duke of UNC Chapel Hill, on
NERSC’s Bassi and Jacquard machines, as well as the Cray-XT3
machines. Also worked on with NERSC’s David Skinner to port and
improve the performance of PMEMD (part of NERSC’s benchmark
suite and SC05 research activities).
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IBM  4 0.48 98 Cray 4 0.40 92 Opteron 4 0.44 97 

SP5 16 1.78 92 XT3 16 1.56 89 Infiniband 16 1.58 87 

(Bassi) 32 3.26 84 (TBA) 32 2.80 80 Cluster 32 2.77 76 

 64 6.06 78  64 4.70 67 (Jacquard) 64 4.91 68 

 128 9.74 63  128 7.69 55  128 7.04 49 

 256 12.23 39  256 9.60 34  256   

 320 13.50 35  320 9.89 28  320   
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Weak Scaling
Time increases from 1.9s on 1 processor for 21K particles, to 3.9s on
1024 processors for 21M particles. Both ewald terms must be
calculated O(NlogN) as well as constraint forces- although latter are
short ranged and should scale as O(N), their calculation requires a
large number of short messages to be sent, and some latency effects
become appreciable.

www.cse.scitech.ac.uk/arc/dlpoly_scale.shtml 
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Community Needs over Next 5 Years
Weak scaling and Strong scaling pretty good for MD. Thus
concurrency and memory trends okay (assuming underlying
libraries are keeping apace); Concurrency and memory trends not
okay for QM.

Hardware: Low latency networks, would like generous cache at all
levels.

Service issues: queue sizes and time limits requires lots of
babysitting. Stability and turn-around is overall rate limiting and
will likely continue to be so.

Analysis of large data sets: this is starting to become non-trivial


